MySQL to Redshift

This page provides you with instructions on how to extract data from MySQL and load it into Redshift. (If this manual process sounds onerous, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is MySQL?

MySQL is the world's most popular open source relational database management system (RDBMS). It's the data store for countless websites and applications; chances are you interact with MySQL-powered technology every day. MySQL is largely used as a transactional or operational database, and not as much for analytics.

Getting data out of MySQL

MySQL provides several methods for extracting data; the one you use may depend upon your needs and skill set.

The most common way to get data out of any database is simply to write queries. SELECT queries allow you to pull the data you want. You can specifying filters and ordering, and limit results.

If you're looking to export data in bulk, there's an easier alternative. Most MySQL installs include a handy command-line tool called mysqldump that allows you to export entire tables and databases in a format you specify, including delimited text, CSV, or an SQL query that would restore the database if run.

Loading data into Redshift

Once you have identified all of the columns you will want to insert, you can use the CREATE TABLE statement in Redshift to create a table that can receive all of this data.

With a table built, it may seem like the easiest way to migrate your data (especially if there isn't much of it) is to build INSERT statements to add data to your Redshift table row by row. If you have any experience with SQL, this will be your gut reaction. But beware! Redshift isn't optimized for inserting data one row at a time. If you have a high volume of data to be inserted, you would be better off loading the data into Amazon S3 and then using the COPY command to load it into Redshift.

Keeping MySQL data up to date

The script you have now should satisfy all your data needs for MySQL – right? Not yet. How do you load new or updated data? It's not a good idea to replicate all of your data each time you have updated records. That process would be painfully slow; if latency is important to you, it's not a viable option.

Instead, you can identify some key fields that your script can use to bookmark its progression through the data, and pick up where it left off as it looks for updated data. Auto-incrementing fields such as updated_at or created_at work best for this. When you've built in this functionality, you can set up your script as a cron job or continuous loop to get new data as it appears in MySQL.

Other data warehouse options

Redshift is great, but sometimes you need to optimize for different things when you're choosing a data warehouse. Some folks choose to go with Google BigQuery, PostgreSQL, or Snowflake, which are RDBMSes that use similar SQL syntax, or Panoply, which works with Redshift instances. If you're interested in seeing the relevant steps for loading data into one of these platforms, check out To BigQuery, To Postgres, To Snowflake, and To Panoply.

Easier and faster alternatives

If all this sounds a bit overwhelming, don’t be alarmed. If you have all the skills necessary to go through this process, chances are building and maintaining a script like this isn’t a very high-leverage use of your time.

Thankfully, products like Stitch were built to solve this problem automatically. With just a few clicks, Stitch starts extracting your MySQL data via the API, structuring it in a way that is optimized for analysis, and inserting that data into your Redshift data warehouse.